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Abstract. We continue the investigation of the recently proposed geometric correspondence
between systems of conservation laws and congruences of lines in projective space. The relationship
between the ‘additional’ conservation laws and hypersurfaces conjugate to a congruence is
established, thus providing a basis for the Lévy transformations of semi-Hamiltonian systems.
Similarly, the correspondence between commuting flows and certain families of planes (containing
the lines of the congruence) gives rise to the adjoint Lévy transformations.

1. Introduction

It was observed recently that many constructions of the theory of hyperbolic systems of
conservation laws

uit = f i(u)x i = 1, . . . , n (1)

are, in a sense, parallel to that of the projective theory of congruences. The correspondence
proposed in [1, 2] associates with any system (1) a congruence of lines

yi = uiy0 − f i(u) i = 1, . . . , n (2)

in an (n+1)-dimensional projective space with coordinatesy0, . . . , yn. It turns out that the basic
concepts of the theory of systems of conservation laws, such as the shock and rarefaction curves,
Riemann invariants, reciprocal transformations and systems of Temple class [15] acquire a
clear and simple projective interpretation when reformulated in the language of the theory
of congruences. For instance, this correspondence enabled the classification of systems of
Temple class to be reduced to a much simpler geometric problem of the classification of
congruences with either planar or conical developable surfaces. In particular, the results of
[15] became intuitive geometric statements about families of lines in projective space. Another
application of the correspondence proposed was the construction of the Laplace transformations
of hydrodynamic-type systems in Riemann invariants [7] which, on the geometric level, have
been the subject of extensive research in projective differential geometry.
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In this paper we continue the investigation of the correspondence between systems of
conservation laws and congruences of lines in projective space and introduce the Lévy and
adjoint Lévy transformations of hydrodynamic-type systems in Riemann invariants. Along
with Laplace transformations, they satisfy a number of remarkable geometric and algebraic
properties.

In sections 2–4 we recall the necessary information about conservation laws, commuting
flows and Riemann invariants of systems (1). Section 5 provides a simple projective
interpretation of the ‘additional’ conservation laws

h(u)t = g(u)x. (3)

Namely, with any conservation law (3) we associate a hypersurface with the parametric
equations

y0 = g(u)

h(u)
yi = ui

g(u)

h(u)
− f i(u) i = 1, . . . , n.

Based on the results of section 1 we demonstrate that this hypersurface is conjugate to a
congruence (2), and any such hypersurface can be obtained within this construction.

A similar geometric correspondence between commuting flows of system (1) and certain
n-parameter families of planes containing the lines of congruence (2) is discussed in section 6.
In the two-component case (n = 2) this construction provides an explicit parametrization of
surfaces harmonic to a congruence (2) by commuting flows of system (1).

The results of sections 5 and 6 allow us to introduce, in a purely geometric way, Lévy and
adjoint Lévy transformations of hydrodynamic-type systems in Riemann invariants,

Rit = λi(R)Rix i = 1, . . . , n (4)

whose characteristic velocities λi(R) satisfy the semi-Hamiltonian property

∂k

(
∂jλ

i

λj − λi

)
= ∂j

(
∂kλ

i

λk − λi

)
i �= j �= k ∂i = ∂/∂Ri (5)

(according to the results of [14] this implies the integrability of system (4)). Let us choose any
conservation law

h(R)t = g(R)x

of system (4) and introduce the new system

Rit = �i(R)Rix i = 1, . . . , n (6)

with the characteristic velocities �i(R) defined by the formulae

�α = g

h
�i = λi∂αh− aiαg

∂αh− aiαh
i �= α (7)

where aiα = ∂αλ
i

λα−λi (here the index α plays a distinguished role). The system (6) and (7) is
called the Lévy transform Lα of system (4).

Similarly, let us take a commuting flow

Rit = µi(R)Rix i = 1, . . . , n

of system (4) and introduce the new system (6) with the characteristic velocities�i(R) defined
by the formulae

�α = λα∂αµ
α − µα∂αλ

α

∂αµα
�i = λiµα − λαµi

µα − µi
i �= α (8)
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which again depend on the choice of α. The system (6) and (8) is called the adjoint Lévy
transform L∗

α of system (4). Transformations Lα and L∗
α satisfy a number of remarkable

properties which are briefly reviewed in sections 7 and 8. In particular, both of them preserve
the semi-Hamiltonian condition (5). In [4] the transformations Lα and L∗

α have been identified
with the vertex operators of a multicomponent KP hierarchy.

A closely related construction of Ribaucour congruences of spheres is discussed in the
appendix.

2. Systems of conservation laws. Equations for the conserved densities

We consider hyperbolic systems of conservation laws

uit = f i(u)x = vij (u)u
j
x vij = ∂f i

∂uj
(9)

assuming the eigenvalues λi of the matrix vij (called the characteristic velocities of system

(9)) to be real and pairwise distinct. Let �ξi = (ξ 1
i (u), . . . , ξ

n
i (u))

t be the corresponding
eigenvectors:

v�ξi = λi�ξi or, in components, vskξ
k
i = λiξ si .

We denote by Li = ξki
∂
∂uk

the Lie derivative along the vector field �ξi and introduce the
commutator expansions

[Li, Lj ] = LiLj − LjLi = ckijLk

where ckij are certain functions of u. Let

h(u)t = g(u)x

be any conservation law of system (9). Its density h and flux g satisfy the equations

∂g

∂uk
= ∂h

∂us
vsk

which upon contraction with �ξi = (ξ 1
i , . . . , ξ

n
i )
t result in

∂g

∂uk
ξki = ∂h

∂us
vskξ

k
i

or

Lig = λiLih i = 1, . . . , n. (10)

Equations (10) are the defining equations for the conserved densities h and the corresponding
fluxes g. The compatibility conditions of (10) are of the form

Li(Ljg)− Lj(Lig) = ckijLkg

or, taking into account (10),

Li(λ
jLjh)− Lj(λ

iLih) = ckijλ
kLkh.

This results in the following linear second-order system for the conserved densities h:

LiLjh = Ljλ
i

λj − λi
Lih +

Liλ
j

λi − λj
Ljh + ckij

λi − λk

λi − λj
Lkh i �= j. (11)
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In particular, h = u1, . . . , un satisfy (11). It should be pointed out that in the generic situation
(to be more precise, in the case ckij �= 0 for any i �= j �= k) the space of solutions of the
overdetermined linear system (11) is finite dimensional. In what follows we will make use of
the equations satisfied by the ratio ϕ = g

h
, which can be obtained by rewriting (10) in the form

Li(ϕh) = λiLih

or, equivalently,

Li ln h = Liϕ

λi − ϕ
. (12)

The compatibility conditions of (12) imply the following nonlinear second-order system for
ϕ:

LiLjϕ =
(

1

ϕ − λi
+

1

ϕ − λj

)
LiϕLjϕ +

Ljλ
i

λj − λi

ϕ − λj

ϕ − λi
Liϕ +

Liλ
j

λi − λj

ϕ − λi

ϕ − λj
Ljϕ

+ckij
λi − λk

λi − λj

ϕ − λj

ϕ − λk
Lkϕ. (13)

Formula (12) establishes an equivalence between the linear system (11) and the nonlinear
system (13). The ratio ϕ = g

h
naturally arises in projective differential geometry (describing

surfaces conjugate to a congruence, see section 3), and in the Lie sphere geometry
(parametrizing Ribaucour congruences of spheres, see the appendix).

3. Commuting flows

A system of conservation laws

uiτ = qi(u)x = wij (u)u
j
x wij = ∂qi

∂uj
(14)

is called the commuting flow of system (9) if uitτ = uiτ t or, equivalently,
(
∂f i

∂uj

∂qj

∂uk
ukx

)
x

=
(
∂qi

∂uj

∂f j

∂uk
ukx

)
x

.

Equating the coefficients at ukxx , we arrive at the commutativity of the matrices v = vij and

w = wij . Thus, they have the same eigenvectors �ξi . Let µi be the characteristic velocities of
system (14):

w�ξi = µi�ξi .
According to section 2, the conserved densities h of system (14) satisfy the equations

LiLjh = Ljµ
i

µj − µi
Lih +

Liµ
j

µi − µj
Ljh + ckij

µi − µk

µi − µj
Lkh. (15)

Since both systems (11) and (15) share a common set of n functionally independent solutions
h = u1, . . . , un, their coefficients must coincide identically (if this were not the case, there
would be a first-order relation between Lih, contradicting the functional independence of
u1, . . . , un). Thus,

Ljµ
i

µj − µi
= Ljλ

i

λj − λi
for any i �= j (16)
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and

ckij

(
µi − µk

µi − µj
− λi − λk

λi − λj

)
= 0 for any i �= j �= k. (17)

In this form the equations governing commuting flows of system (9) have been set down in
[13].

If n = 2 equations (17) are redundant. Let us consider the case n = 3 and assume
that at least one of the coefficients ckij (with three distinct indices i, j, k) is non-zero. Then
equations (17) imply µi = λib − a for appropriate b and a. The substitution of this
representation into (16) implies, however, that both a and b must be constants so that the
commuting flow is trivial. Hence, for n = 3 only systems with zero ckij (for distinct i, j, k)
may possess non-trivial commuting flows.

Similarly, in the case n � 3 the presence of ‘sufficiently many’ non-zero coefficients ckij
prevents the existence of non-trivial commuting flows.

4. Diagonalizable systems of conservation laws

Let us assume that all coefficients ckij (with distinct i, j, k) are zero. In this case one can

normalize the eigenvectors �ξi in such a way that the Lie derivatives Li will pairwise commute:
[Li, Lj ] = 0, so that the remaining coefficients cjij will also be zero. The commutativity
of Li implies the existence of the coordinates R1(u), . . . , Rn(u) such that Li become partial
derivatives: Li = ∂i = ∂/∂Ri. In these coordinates equations (9) assume the diagonal form

Rit = λi(R)Rix i = 1, . . . , n. (18)

VariablesRi are called the Riemann invariants of system (9). Systems (9), possessing Riemann
invariants, are called diagonalizable. Let ut = fx be a conservation law of system (18). In the
diagonalizable case equations (10) assume the form

∂if = λi∂iu i = 1, . . . , n

while system (11) for the conserved densities u simplifies to

∂i∂ju = aij ∂iu + aji∂ju i �= j (19)

where aij = ∂j λ
i

λj−λi . The compatibility conditions of system (19) are of the form

∂kaij = aikakj + aij ajk − aij aik i �= j �= k (20)

they must be identically satisfied if we require system (19) to possessn functionally independent
solutions u = u1, . . . , un. In fact, conditions (20) imply the existence of infinitely many
conservation laws parametrized by n arbitrary functions of one variable. Systems (18)
satisfying (20) are called semi-Hamiltonian. We refer to [5, 13, 14] for further information
concerning integrability, differential geometry and applications of the semi-Hamiltonian
systems. Semi-Hamiltonian systems possess infinitely many commuting flows

Riτ = µiRix

with the characteristic velocities µi governed by the equations

∂jµ
i

µj − µi
= ∂jλ

i

λj − λi
= aij i �= j.

We point out that any semi-Hamiltonian system possesses infinitely many different conservative
representations.
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5. Systems of conservation laws and congruences of lines. Hypersurfaces conjugate to a
congruence

With any system of conservation laws

uit = f i(u)x

we associate an n-parameter family of lines

y1 = u1y0 − f 1(u)

...

yn = uny0 − f n(u)

(21)

in the (n + 1)-dimensional space An+1 with the coordinates y0, y1, . . . , yn (see [1, 2] for the
motivation and the most important properties of this correspondence). In the case n = 2 we
obtain a two-parameter family of lines, or a congruence of lines in A3. From the beginning of
the 19th century the theory of congruences was one of the most popular chapters of classical
differential geometry (see, e.g., [9]). We keep the name ‘congruence’ for any n-parameter
family of lines (21). Let us briefly recall the main geometrical properties of line congruences.

Definition. A hypersurface Mn ⊂ An+1 is said to be focal to the congruence (21) if all lines
of the congruence are tangent to Mn.

The idea of focal hypersurfaces is obviously borrowed from optics: thinking of the lines
of the congruence as the rays of light, one can intuitively think of the focal hypersurfaces
as the locus in An+1 where the light concentrates (this explains why in German literature
focal hypersurfaces are called ‘Brennflächen’, which can be translated as ‘burning surfaces’).
It can be demonstrated that the generic congruence (21) in An+1 possesses exactly n focal
hypersurfaces, so that any congruence can be viewed as a collection of common tangents to n
hypersurfaces inAn+1. The radius-vector �ri of the ith focal hypersurface is given by parametric
equations

�ri = (y0, y1, . . . , yn) = (λi, u1λi − f 1, . . . , unλi − f n) (22)

where λi is the ith characteristic velocity of system (9), see [1, 2]. A line (21) is tangent to �ri
at the point with y0 = λi . Indeed, substituting y0 = λi in (21) we obviously obtain a point
belonging to the focal hypersurface �ri . Moreover, the formula

Li �ri = Liλ
i(1, u1, . . . , un)

(which is a consequence of (10)) implies that the direction Li �ri coincides with the direction
of the line (21), thus guaranteeing the tangency. Summarizing, we have an explicit
parametrization (22) of the focal hypersurfaces �ri by the characteristic velocities λi of system
(9).

Let us consider a hypersurface Mn with the radius-vector �r parametrized as follows:

�r = (y0, y1, . . . , yn) = (
ϕ, u1ϕ − f 1, . . . , unϕ − f n

)
(23)

here ϕ(u) is an arbitrary function which is assumed to be different from λi so that Mn is
not focal. A line (21) meets Mn at the point with y0 = ϕ. Obviously, any hypersurface
Mn ∈ An+1 can be parametrized in the form (23) for an appropriate function ϕ. We say that
the hypersurface Mn is conjugate to the congruence (21) if and only if

LiLj �r ∈ TMn for any i �= j.
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Geometrically, this means that the developable surfaces of the congruence (21) meet Mn at
the curves of a conjugate net. In a 3-space the notion of the conjugacy between a surface and
a congruence was introduced by Guichard (see [6], chapter 1; [9]).

Theorem 1. Hypersurface (23) is conjugate to a congruence if and only if ϕ is representable
in the form ϕ = g

h
, where ht = gx is a conservation law of system (9).

Proof. The tangent space of Mn is spanned by the vectors

Lj �r = (Ljϕ) �U + (ϕ − λj )Lj �U (24)

where �U denotes the (n + 1)-vector (1, u1, . . . , un). Hence,

Lj �U = Ljϕ

λj − ϕ
�U mod TMn. (25)

Let us compute LiLj �r:

LiLj �r = (LiLjϕ) �U + (Ljϕ)Li �U + Li(ϕ − λj )Lj �U + (ϕ − λj )LiLj �U .
Inserting here LiLj �U from (11) and keeping in mind (25), we arrive at

LiLj �r =
(
LiLjϕ + Ljϕ

Liϕ

λi − ϕ
+ Li(ϕ − λj )

Ljϕ

λj − ϕ
+ (ϕ − λj )

(
Ljλ

i

λj − λi

Liϕ

λi − ϕ

+
Liλ

j

λi − λj

Ljϕ

λj − ϕ
+ ckij

λi − λk

λi − λj

Lkϕ

λk − ϕ

))
�U mod TMn.

Hence, LiLj �r ∈ TMn if and only if the coefficient at �U vanishes. The resulting system for ϕ
coincides identically with (13).

Thus, hypersurfaces conjugate to a congruence (21) are parametrized by conservation laws
of system (9). According to [6], two hypersurfaces conjugate to one and the same congruence
are said to be in the relation F (or related by a fundamental transformation). �

Remark 1. The case ϕ = λi requires a special treatment. In this case Mn coincides with
the ith focal hypersurface of a congruence. A direct computation shows that the ith focal
hypersurface is conjugate to a congruence if and only if cijk = 0 for any j, k �= i (i is fixed!).
This is equivalent to the existence of a function Ri(u) (called the ith Riemann invariant) such
that

Rit = λiRix

in particular, all focal hypersurfaces are conjugate to a congruence if and only if the system
(9) possesses n Riemann invariants. The proof and some further details can be found in [2],
see also [3].

Remark 2. If the conservation law ht = gx is a linear combination of conservation laws (9),
the hypersurface Mn degenerates into a hyperplane (which is automatically conjugate to any
congruence). Thus, only ‘additional’ conservation laws give rise to the non-trivial conjugate
hypersurfaces.

Remark 3. Conjugate hypersurfaces always appear in one-parameter families since, for a
fixed density h, one can add a constant c to the flux g. The corresponding family of conjugate
hypersurfaces �rc determined by ϕc = g+c

h
forms a parallel family, that is, the directions Lj �rc

are independent of c. This immediately follows from (24) since the ratio Ljϕc
ϕc−λj = −Ljh

h
does

not depend on c.
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6. Surfaces harmonic to a congruence

In this section we consider two-component systems of conservation laws

u1
t = f 1

x

u2
t = f 2

x

(26)

and the associated congruences of lines in A3:

y1 = u1y0 − f 1

y2 = u2y0 − f 2.
(27)

Let

u1
τ = q1

x

u2
τ = q2

x

(28)

be a commuting flow of system (26). In the Riemann invariants R1, R2 (we point out that any
two-component system is diagonalizable) equations (26) and (28) assume the forms

R1
t = λ1R1

x

R2
t = λ2R2

x

and

R1
τ = µ1R1

x

R2
τ = µ2R2

x

respectively. Here the densities u = (u1, u2) and the fluxes f = (f 1, f 2), q = (q1, q2) satisfy
the equations

∂if = λi∂iu ∂iq = µi∂iu i = 1, 2.

With any commuting flow (28) we associate a two-parameter family of planes in A3 defined
by the equations

y1 − u1y0 + f 1

q1
= y2 − u2y0 + f 2

q2
. (29)

The family of planes (29) satisfies the following remarkable properties.

(a) Each plane π from the family (29) contains a line l of the congruence (27).
(b) The congruence of lines l1 = π∩∂1π is conjugate to the focal surface �r1 of the congruence

(27). Similarly, the congruence of lines l2 = π ∩ ∂2π is conjugate to �r2. The lines l1
and l2 are called the characteristics of the plane π . The characteristic l1 (respectively, l2),
meets the line l in the point of tangency of l with the focal surface �r1 (respectively, �r2).

The proof follows from the explicit parametrization of the congruences l1, l2.
Congruence l1:

y1 =
(
u1 − q1

µ1

)
y0 −

(
f 1 − λ1q1

µ1

)

y2 =
(
u2 − q2

µ1

)
y0 −

(
f 2 − λ1q2

µ1

)
.
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Congruence l2:

y1 =
(
u1 − q1

µ2

)
y0 −

(
f 1 − λ2q1

µ2

)

y2 =
(
u2 − q2

µ2

)
y0 −

(
f 2 − λ2q2

µ2

)
.

Obviously, the line l1 passes through the point

(y0, y1, y2) = (
λ1, u1λ1 − f 1, u2λ1 − f 2

)
of the focal surface �r1. Similarly, the line l2 passes through the point

(y0, y1, y2) = (
λ2, u1λ2 − f 1, u2λ2 − f 2

)
of the focal surface �r2. The point of intersection l1 ∩ l2 ∈ π has the coordinates

y0 = λ2µ1 − λ1µ2

µ1 − µ2

y1 = λ2µ1 − λ1µ2

µ1 − µ2
u1 +

λ1 − λ2

µ1 − µ2
q1 − f 1

y2 = λ2µ1 − λ1µ2

µ1 − µ2
u2 +

λ1 − λ2

µ1 − µ2
q2 − f 2

(30)

and sweeps a surface in A3. By a construction, the surface (30) is the envelope of the family
of planes (29). It has the following geometric properties.

(a) Each tangent plane π of the surface (30) contains a line l of the congruence (27). By
construction, π and l ∈ π correspond to the same values of parametersR1, R2. Thus, one
can speak of the correspondence between lines (27) and points of the surface (30).

(b) The net R1, R2 on the surface (30) is conjugate. In other words, the developable surfaces
of the congruence (27) correspond to a conjugate net on the surface (30).

Surfaces satisfying the properties (a) and (b) are called harmonic to a congruence (27),
see [9], p 251. Formulae (30) provide an explicit parametrization of such surfaces by the
commuting flows of system (26). Conversely, any surface harmonic to a congruence (27) is
representable in the form (30).

7. Lévy transformations of semi-Hamiltonian systems

Let us consider a semi-Hamiltonian system (18) in Riemann invariants

Rit = λi(R)Rix i = 1, . . . , n

whose conservation laws

ut = fx

satisfy the equations

∂if = λi∂iu i = 1, . . . , n

∂i∂ju = aij ∂iu + aji∂ju i �= j aij = ∂jλ
i

λj − λi
.
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Let us choose a particular conservation law

ht = gx

of system (18) and introduce the new variable U by the formula

U = u− h

∂αh
∂αu (31)

where α is fixed. Transformations of this type originating from a projective differential
geometry of conjugate nets are known as Lévy transformations [6, chapter 1, 10, p 94, 12]. In
[4] Lévy transformations have been identified with the vertex operators of multicomponent KP
hierarchy. Their geometric interpretation will be clarified in the second half of this section.
We will refer to (31) as Lévy transformation Lα . A direct calculation shows that U = Lα(u)
satisfies the equations of the same form as u:

∂i∂jU = Aij ∂iU + Aji∂jU (32)

where the new coefficients A = Lα(a) are given by the formulae

Aαi =
(

1 − aiαh

∂αh

)
∂ih

h
i �= α

Aij = aij + ∂j ln

(
1 − aiαh

∂αh

)
i �= α j is arbitrary.

Transformations Lα can be pulled back to the transformations of the corresponding
hydrodynamic-type systems: let us introduce the system

RiT = �i(R)RiX i = 1, . . . , n (33)

with the characteristic velocities

�α = g

h

�i = λi∂αh− aiαg

∂αh− aiαh
i �= α.

(34)

Theorem 2. Conservation laws

UT = FX

of the system (33) and (34) are the Lα-transforms of conservation laws

ut = fx

of system (18):

U = Lα(u) = u− h

∂αh
∂αu

F = Lα(f ) = f − g

∂αg
∂αf.

Formally, the proof of this theorem follows from the identities

∂iF = �i∂iU Aij = ∂j�
i

�j −�i

which can be verified by a direct calculation. Geometric constructions underlying these
formulae will be discussed below. The system (33) and (34) will be called the Lα-transform
of system (18). Obviously, transformations Lα preserve the semi-Hamiltonian property.
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We also include the Lévy transforms of Lame coefficients hi defined by the formulae

∂j ln hi = aij j �= i.

The Lα-transformed Lame coefficients are given by

Hα = hα
h

∂αh

Hi = hi

(
1 − aiαh

∂αh

)
i �= α.

One can check directly that

∂j lnHi = Aij j �= i.

Lévy transformations of hydrodynamic-type systems in Riemann invariants are closely
related to Laplace transformations discussed recently in [7, 11]. We recall that the Laplace
transformation Sαβ of system (19) is defined by the formula

U = Sαβ(u) = u− ∂αu

aβα

where both indicesα �= β are fixed. Laplace transformations also induce transformations of the
characteristic velocities λi , the explicit form of which has been set down in [7]. One can check
directly that the Lévy transformation Lα of system (18) is related to its Lévy transformation
Lβ via the Laplace transformation Sαβ :

Lα = Sαβ ◦ Lβ.
To clarify the geometric picture underlying transformations Lα we choose an arbitrary

conservative representation

uit = f ix

of system (18) and introduce the associated congruence

y1 = u1y0 − f 1

...

yn = uny0 − f n.

LetMn be a hypersurface conjugate to this congruence. Following section 4, we represent the
radius-vector �r of Mn in the form

�r = (
ϕ, u1ϕ − f 1, . . . , unϕ − f n

)
ϕ = g

h

where ht = gx is a conservation law of system (18). The coordinate system R1, . . . , Rn on
Mn is conjugate, so that

∂i∂j �r ∈ TMn for any i �= j.

Let us introduce a new congruence consisting of the tangents to the Rα-curves on the
hypersurface Mn. Parametrically, its lines can be represented in the form

�r + t∂α �r
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or, in the components,

y0 = ϕ + t∂αϕ

y1 = u1ϕ − f 1 + t (u1∂αϕ + (ϕ − λα)∂αu
1)

...

yn = unϕ − f n + t (un∂αϕ + (ϕ − λα)∂αu
n).

Inserting t = y0−ϕ
∂αϕ

in the last n equations, we arrive at the new congruence

y1 = U 1y0 − F 1

...

yn = Uny0 − Fn

(35)

where

U 1 = u1 +
ϕ − λα

∂αϕ
∂αu

1 F 1 = f 1 + ϕ
ϕ − λα

∂αϕ
∂αu

1

...

Un = un +
ϕ − λα

∂αϕ
∂αu

n F n = f n + ϕ
ϕ − λα

∂αϕ
∂αu

n.

Since ϕ−λα
∂αϕ

= − h
∂αh

, these formulae can be rewritten in the form

U = u− h

∂αh
∂αu F = f − g

∂αg
∂αf.

Congruence (35) will be called the Lα-transform of the initial congruence. The corresponding
system of conservation laws

UiT = F iX

has the same Riemann invariants R1, . . . , Rn:

RiT = �iRiX

where �i can be computed by the formula �i = ∂iF/∂iU . A direct calculation results in
the formulae (34). Note that the final expressions for �i do not depend on the particular
conservative representation uit = f ix of system (18). If, for Mn, we choose any of the
focal hypersurfaces of the congruence (which are all conjugate to a congruence if the system
possesses Riemann invariants), the above construction reproduces Laplace transformations.

Formula (32) shows that the densityu = h belongs to the kernel of the Lévy transformation
Lα . Nevertheless, transformations Lα can be explicitly inverted, as we will demonstrate in the
next section.

Let us conclude with the formula for the composition of Lévy transformations

L = Ln ◦ · · · ◦ L2 ◦ L1

corresponding to n particular linearly independent conservation laws hit = gix i = 1, . . . , n
of system (18). The composition is understood as follows. Let ut = fx be an arbitrary
conservation law of system (18). First of all, we apply to ut = fx the transformation L1,
corresponding to the first conservation law h1

t = g1
x . Secondly, we apply to the result of the

first step the transformation L2, corresponding to the L1-transform of the conservation law
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h2
t = g2

x . Proceeding in this way, we obtain the L-transformed density U = L(u) and the flux
F = L(f ) in the following compact form:

U =

det




u ∂1u . . . ∂nu

h1 ∂1h
1 . . . ∂nh

1

hn ∂1h
n . . . ∂nh

n




det


 ∂1h

1 . . . ∂nh
1

∂1h
n . . . ∂nh

n




F =

det



f ∂1f . . . ∂nf

g1 ∂1g
1 . . . ∂ng

1

gn ∂1g
n . . . ∂ng

n




det


 ∂1g

1 . . . ∂ng
1

∂1g
n . . . ∂ng

n




. (36)

Geometrically, the composition Ln ◦ · · · ◦ L2 ◦ L1 corresponds to the following construction
(compare with [9], pp 255–66): choose an arbitrary conservative representation

uit = f ix

of system (18) and introduce the corresponding congruence (21):

yi = uiy0 − f i.

LetMi, i = 1, . . . , n, ben hypersurfaces conjugate to congruence (21). According to section 3,
they are parametrized by n particular conservation laws hit = gix of system (18). Let TMi be
the tangent hyperplanes of hypersurfaces Mi in the points of intersection with the line (21).
The intersection

TM1 ∩ · · · ∩ TMn

defines a new line

yi = Uiy0 − F i

where the formulae for U = Ui and F = F i coincide with (36).

8. Adjoint Lévy transformations

We again consider semi-Hamiltonian systems (18)

Rit = λi(R)Rix

with the conservation laws

ut = fx

satisfying the equations

∂if = λi∂iu

∂i∂ju = aij ∂iu + aji∂ju aij = ∂jλ
i

λj − λi
.

Let

Riτ = µi(R)Rix (37)

be a commuting flow of system (18):

∂jµ
i

µj − µi
= aij .
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Let q be the flux of the density u, corresponding to this commuting flow:

uτ = qx.

The flux q and the density u satisfy the equations

∂iq = µi∂iu.

Let us introduce the new variable U by the formula

U = u− q

µα
(38)

where α is fixed. We will refer to (38) as the adjoint Lévy transformation L∗
α . A direct

calculation shows that U = L∗
α(u) satisfies the equations of the same form as u:

∂i∂jU = Aij ∂iU + Aji∂jU

where the new coefficients A = L∗
α(a) are given by the formulae

Aαi = aαi + ∂i ln
∂αµ

α

µα
i �= α

Aij = aij + ∂j ln

(
1 − µi

µα

)
i �= α j is arbitrary.

Transformations L∗
α can be pulled back to the transformations of the corresponding

hydrodynamic-type systems: let us introduce the system

RiT = �i(R)RiX i = 1, . . . , n (39)

with the characteristic velocities

�α = λα∂αµ
α − µα∂αλ

α

∂αµα

�i = λiµα − λαµi

µα − µi
i �= α.

(40)

Theorem 3. Conservation laws

UT = FX

of the system (39) and (40) are the L∗
α-transforms of conservation laws

ut = fx

of system (18):

U = L∗
α(u) = u− q

µα

F = L∗
α(f ) = f − λαq

µα
.

Formally, the proof of this theorem follows from the identities

∂iF = �i∂iU Aij = ∂j�
i

�j −�i

which can be verified by a direct calculation. Geometric constructions underlying these
formulae will be discussed below. The system (39) and (40) will be called the L∗

α-transform
of system (18). Obviously, transformations L∗

α preserve the semi-Hamiltonian property.
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We also include the L∗
α transforms of Lame coefficients hi defined by the formulae

∂j ln hi = aij j �= i.

The L∗
α-transformed Lame coefficients are given by

Hα = hα
∂αµ

α

µα

Hi = hi

(
1 − µi

µα

)
i �= α.

One can check directly that

∂j lnHi = Aij j �= i.

Transformations L∗
α and Laplace transformations Sαβ satisfy the identities

L∗
α = L∗

β ◦ Sβα.
To clarify the geometric picture underlying transformations L∗

α we choose an arbitrary
conservative representation

uit = f ix

of system (18) and introduce the associated congruence

y1 = u1y0 − f 1

...

yn = uny0 − f n.

Let

uiτ = qix

be a commuting flow of system (18) with the characteristic velocities µi , so that

∂iq = µi∂iu

(with the last identity holding for any q = qk, u = uk). Let us introduce the n-parameter
family of 2-planes in An+1 defined by the equations

y1 − u1y0 + f 1

q1
= · · · = yn − uny0 + f n

qn
. (41)

The family of planes (41) possesses the following three important properties.

(a) Each plane π of the family (41) contains a line l of the initial congruence.
(b) Each plane π intersects the plane ∂iπ along a line li :

li = π ∩ ∂iπ
(we point out that two planes in An+1 do not necessarily intersect along a line unless
n = 2). Geometrically, this property implies that each one-parameter subfamily of (41)
specified by fixing the values of Rk, k �= i envelopes a developable surface in An+1. The
lines li , i = 1, . . . , n, are called the characteristics of the plane π .

(c) Congruence li is conjugate to the ith focal hypersurface

�ri = (
λi, u1λi − f 1, . . . , unλi − f n

)
of the initial congruence l.
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Conversely, one can show that any n-parameter family of 2-planes satisfying the properties
(a)–(c) is necessarily of the form (41) for an appropriate commuting flow uiτ = qix . The
congruence lα will be called the L∗

α-transform of the initial congruence l. A direct calculation
shows that lα is representable in the form

y1 = U 1y0 − F 1

...

yn = Uny0 − Fn

where

U 1 = u1 − q1

µα
F 1 = f 1 − λαq1

µα

...

Un = un − qn

µα
Fn = f n − λαqn

µα

(compare with theorem 4). The line lα meets the focal hypersurface �rα in the point(
λα, u1λα − f 1, . . . , unλα − f n

)
.

The corresponding system of conservation laws

UiT = F iX

has the same Riemann invariants R1, . . . , Rn:

RiT = �iRiX

(in fact, this is the analytic manifestation of the above property (c)), where the transformed
characteristic velocities�i = ∂iF/∂iU coincide with (40). Note that the final expressions for
�i do not depend on the particular conservative representation uit = f ix of system (18).

Obviously, the inverse transformation lα → l is the transformation Lα of Lévy. Indeed, lα
is conjugate to the hypersurface �rα , while the initial congruence l consists of the Rα-tangents
to the hypersurface �rα . Thus, Lévy transformations Lα are the inverses of L∗

α . This can be
demonstrated analytically as well.

Let us consider a system

Rit = λiRix

along with its Lévy transform Lα defined by the formulae (33) and (34). The transformed
system (33) and (34) possesses the commuting flow

µα = 1

h

µi = aiα

aiαh− ∂αh
i �= α

(which can be obtained by a shift g → g+1 in the formulae (34)). Applying to the transformed
system (33) and (34) transformation L∗

α (generated by the above commuting flow), we return
to the initial system

Rit = λiRix.

Conversely, let us consider transformation L∗
α . The transformed system (39) and (40) possesses

the conservation law

hT = gX h = 1

µα
g = λα

µα

(which can be obtained by a shift q → q − 1 in the formula (38)). Applying to (39) and (40)
the transformation Lα (generated by this particular h), we also return back to the initial system.
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Appendix. Ribaucour congruences of spheres

LetMn be a hypersurface in the Euclidean spaceEn+1 parametrized by coordinates u1, . . . , un.
Let �r and �n be the radius-vector and the unit normal of Mn, respectively. The Weingarten
formulae

∂ �n
∂uj

= wij (u)
∂ �r
∂ui

define the so-called Weingarten (shape) operator of hypersurface Mn. Its eigenvalues and
eigenvectors are called the principal curvatures and the principal directions ofMn, respectively.
Let us consider an n-parameter family (congruence) of hyperspheres S which are tangent to
Mn. Let R(u) be the radius of the hypersphere from the congruence S which is tangent
to Mn at the point �r(u). The congruence of hyperspheres S has exactly two enveloping
hypersurfaces (note the difference with line congruences!) one of which coincides with Mn

by a construction. Let M̃n be the second sheet of the envelope. Clearly, the congruence S
induces the point correspondence between both sheets: a point p ∈ Mn is said to correspond
to the point p̃ ∈ M̃n if p and p̃ are the two points of tangency of the envelopes with one and
the same hypersphere from the congruence S.

Definition. A congruence of hyperspheres S is called the congruence of Ribaucour if the
principal distributions of Mn correspond to the principal distributions of M̃n.

Let us introduce the system of hydrodynamic type

uit = wij (u)u
j
x (A1)

where wij is the Weingarten operator of Mn. We refer to [8] for a general discussion of the
correspondence between hypersurfaces and Hamiltonian systems of hydrodynamic type. Let

h(u)t = g(u)x

be a conservation law of system (A1).

Theorem 4. A congruence S(u) is the congruence of Ribaucour if and only if R(u) is
representable in the form

R(u) = h(u)

g(u)

for some conservation law of the system (A1).

In the case n = 2 this result (stated in a somewhat different form) can be found in [6]. It
should be emphasized that this theorem applies equally to hypersurfaces which do not possess
a curvature-line parametrization (for n = 2 such parametrization is always possible). We hope
to present the details elsewhere.
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